A Thue equation with quadratic integers as variables
نویسندگان
چکیده
منابع مشابه
Solving a Specific Thue-mahler Equation
The diophantine equation x3 _ 3xy2 _y3 = ?3no 17 n l9n2 is completely solved as follows. First, a large upper bound for the variables is obtained from the theory of linear forms in p-adic and real logarithms of algebraic numbers. Then this bound is reduced to a manageable size by p-adic and real computational diophantine approximation, based on the L3-algorithm. Finally the complete list of sol...
متن کاملExtended gcd of quadratic integers
where θ = 1 + √ d 2 if d mod 4 = 1 and θ = √ d if d mod 4 = 2, 3. The purpose of this paper is to compute the extended gcd of to quadratic integers in ring Z[θ]. We assume throughout that Z[θ] is principal ideal ring, but not necessarily an euclidean ring. If [a, b+ cθ] is the module {ax+(b+ cθ)y, x, y ∈ Z}, it can be shown [3] that I is an ideal of Z[θ] if and only if I = [a, b+ cθ]; where a, ...
متن کاملQuadratic Programming with Discrete Variables
NIE, TIANTIAN. Quadratic Programming with Discrete Variables. (Under the direction of Dr. Shu-Cherng Fang.) In this dissertation, we study the quadratic programming problem with discrete variables (DQP). DQP is important in theory and practice, but the combination of the quadratic feature of the objective function and the discrete nature of the feasible domain makes it hard to solve. In this th...
متن کاملShort representation of quadratic integers
Let O be a real quadratic order of discriminant. For elements in O we develop a compact representation whose binary length is polynomially bounded in log log H(), log N() and log where H() is the height of and N() is the norm of. We show that using compact representations we can in polynomial time compute norms, signs, products, and inverses of numbers in O and principal ideals generated by num...
متن کاملÉtale Lattices over Quadratic Integers
We construct lattices with quadratic structure over the integers in quadratic number fields having the property that the rank of the quadratic structure is constant and equal to the rank of the lattice in all reductions modulo maximal ideals. We characterize the case in which such lattices are free. The construction gives a representative of the genus of such lattices as an orthogonal sum of “s...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Mathematics of Computation
سال: 1995
ISSN: 0025-5718
DOI: 10.1090/s0025-5718-1995-1277766-0